Perspective Taking: An Organizing Principle for Learning in Human-Robot Interaction

نویسندگان

  • Matt Berlin
  • Jesse Gray
  • Andrea Lockerd Thomaz
  • Cynthia Breazeal
چکیده

The ability to interpret demonstrations from the perspective of the teacher plays a critical role in human learning. Robotic systems that aim to learn effectively from human teachers must similarly be able to engage in perspective taking. We present an integrated architecture wherein the robot’s cognitive functionality is organized around the ability to understand the environment from the perspective of a social partner as well as its own. The performance of this architecture on a set of learning tasks is evaluated against human data derived from a novel study examining the importance of perspective taking in human learning. Perspective taking, both in humans and in our architecture, focuses the agent’s attention on the subset of the problem space that is important to the teacher. This constrained attention allows the agent to overcome ambiguity and incompleteness that can often be present in human demonstrations and thus learn what the teacher intends to teach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Experimental Study on Blinking and Eye Movement Detection via EEG Signals for Human-Robot Interaction Purposes Based on a Spherical 2-DOF Parallel Robot

Blinking and eye movement are one of the most important abilities that most people have, even people with spinal cord problem. By using this ability these people could handle some of their activities such as moving their wheelchair without the help of others. One of the most important fields in Human-Robot Interaction is the development of artificial limbs working with brain signals. The purpos...

متن کامل

3D Visibility Check in Webots for Human Perspective Taking in Human-Robot Interaction

The rapid development of intelligent robotics would facilitate humans and robots will live and work together at a human workspace in the near future. It means research on effective human-robot interaction is essential for future robotics. The most common situation of humanrobot interaction is that humans and robots work cooperatively, and robots should give proper assistance to humans for achie...

متن کامل

Design and development of ShrewdShoe, a smart pressure sensitive wearable platform

     This study introduces a wearable in-shoe system for real-time monitoring and measurement of the plantar pressure distribution of the foot using eleven sensing elements. The sensing elements utilized in ShrewdShoe have been designed in an innovative way, they are based on a barometric pressure sensor covered with a silicon coating. The presented sensing element has great linearity up to 300...

متن کامل

Navigation of a Mobile Robot Using Virtual Potential Field and Artificial Neural Network

Mobile robot navigation is one of the basic problems in robotics. In this paper, a new approach is proposed for autonomous mobile robot navigation in an unknown environment. The proposed approach is based on learning virtual parallel paths that propel the mobile robot toward the track using a multi-layer, feed-forward neural network. For training, a human operator navigates the mobile robot in ...

متن کامل

Human-robot interaction based learning for task-independent dynamics prediction

Predictive dynamics learning can be drastically improved for robots by interacting with humans or other agents and taking advantage of their knowledge. This paper presents an initial work on interaction based learning algorithms embedded in a task-independent model adapted to continuous and multiple scale anticipations.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006